Photon-Activation Analysis for Zirconium with Molybdenum Used as the Internal-Reference Element¹⁾

Tong-Chuin Pung,* Toyoaki Kato, and Yoshinaga Oka** Department of Chemistry, Faculty of Science, Tohoku University, Katahira-cho, Sendai (Received September 16, 1970)

A method for the determination of zirconium has been studied by activation analysis with bremsstrahlung photons, with molybdenum used as the internal-reference element. This method is based on the y-ray spectrometric measurement of the ⁸⁹Zr activity produced by the 90 Zr(γ , n) reaction and on the comparison of this activity with the 88Zr activity formed by the (γ, α) reaction on molybdenum. The reaction products and their rates of production in zirconium and in molybdenum have also been examined as functions of bremsstrahlung maximum energies up to 60 MeV, and the best conditions for the determination of zirconium are proposed. When the maximum energy was set at 20 MeV, no interfering reactions occurred; under the present experimental conditions, a zirconium content down to about $18 \mu g$ can be determined accurately. The reliability and the versatility of this method are demonstrated.

A minute amount of zirconium can be determined by photon-activation analysis using 89Zr activity induced in an irradiated sample. This technique has been applied to the determination of zirconium in hafnium samples, using the non-destructive internalreference method.2,3)

In a previous report,⁴⁾ a method for the determination of niobium by photon-activation analysis has been proposed, with molybdenum used as the internalreference element. The activity of the 92mNb produced by the (γ, n) reaction was utilized for the determination, while 95mNb or 96Nb activities coming from molybdenum by the (γ, p) processes were used as references. On the basis of similar principles, methods for the determination of arsenic,5) rubidium,6) and cesium⁷⁾ have also been established. Besides the (γ,n) and the (γ,p) reactions, the (γ,α) reactions can be induced by activation with photons in the giant resonance-energy region; the yields of (γ, α) reactions in several medium-weight nuclei for 20 MeV bremsstrahlung were given previously.8)

Thus, an element can be determined by comparing the activity of its (γ,n) reaction product with the activity induced by the (γ, α) reaction on the reference element having an atomic number higher by two.

The present work concerns a method for the determination of zirconium using molybdenum as the internal-reference element. In order to determine the best conditions for this purpose, some work has also been carried out on the yields of photonuclear reactions over the energy range of bremsstrahlung photons up to 60 MeV. When a maximum energy was set at 20 MeV, no interfering reactions occurred, and traces of zirconium down to about 18 μ g could be determined accurately.

Experimental

Materials and Irradiation. The zirconium oxide was of an analytical-reagent grade and was from the Johnson Mathey Corp. The molybdenum was a metallic powder of 99.9% purity, from Wako Pure Chemical Industries, Ltd. Synthetic mixtures of these two samples, with known zirconium-to-molybdenum weight ratios ranging from 2.46× 10^{-3} to 2.49×10^{-5} , were prepared in order to examine the sensitivity and the accuracy of the method. Each sample, weighing from 0.1 to 2 g, was placed either in a silica or Pyrex tube with an internal diameter of 8 mm. The tube was then placed in a water-cooled target holder immediately behind the bremsstrahlung generator, a 3-mm-thick platinum plate, and was irradiated. The irradiation periods varied between 1 and 3 hr.

Two kinds of linear-electron accelerators of Tohoku University were the bremsstrahlung sources. One of them provided a 20 MeV-electron beam. The other machine, which was capable of accelerating electrons with much higher energies, was used as the 30-to-60 MeV bremsstrahlung source. The experimental method, involving bremsstrahlung-flux monitoring, and the details of the irradiation were essentially the same as have been described in detail in a previous report.9)

Separation of Zirconium. The separation of zirconium activities from an irradiated sample was performed, after the addition of a zirconium carrier (10 mg), by means of the anion-exchange method, with a mixture of hydrofluoric and hydrochloric acid as the eluent.

The method was essentially the same as has been described in a previous report.4) The zirconium activities were eluted from a Dowex 1×8 column¹⁰⁾ with 80 ml of a 0.01 N hydrofluoric acid - 9 N hydrochloric acid mixture. To this fraction, 5 ml of a saturated aqueous solution of boric acid were added. The zirconium hydroxide was precipitated from this solution by the addition of aqueous ammonia, filtered, washed, and then ignited to give zirconium oxide. This was wrapped with a thin sheet of aluminum for γ -ray counting. The chemical yield was determined, if needed.

¹⁾ Study of Activation Analysis Using the Internal-Reference

<sup>92, 93 (1971).

*</sup> Present address: The Research Institute for Iron, Steel,

Linear Method. 2011.

* Present address: The Research Institute for Iron, Steel,

Linear Method. 2011. and Other Metals, Tohoku University, Katahira-cho, Sendai.

^{**} Present address: Department of General Education, Kitasato University, Sagamihara, Kanagawa.

Y. Oka, T. Kato, and M. Sasaki, Nippon Kagaku Zasshi, 84, 588 (1963).

³⁾ Y. Oka and T. Kato, ibid., 86, 835 (1965).

Y. Oka, T-C. Pung, and T. Saito, This Bulletin, 43, 1083

Y. Oka, T. Kato, and Y. Konami, Bunseki Kagaku, 18, 971 (1969).

⁶⁾ H-T. Tsai, T. Kato, and Y. Oka, This Bulletin, 43, 2823 (1970).

⁷⁾ H-T. Tsai, Nippon Kagaku Zasshi, 92, 60 (1971).
8) Y. Oka, T. Kato, K. Nomura, T. Saito, and H-T. Tsai, This Bulletin, 41, 2660 (1968).

⁹⁾ Y. Oka, T. Kato, and N. Sato, This Bulletin, 42, 387 (1969).

^{10) 1} cm $\phi \times 40$ cm, 100—200 mesh.

TABLE 1. NUCLEAR DATA FOR ZIRCONIUM NUCLIDES

Target nuclide (abundance, %)	Reaction type	Product nuclide	$\begin{array}{c} \text{Mass} \\ \text{threshold} \\ (-Q, \text{ MeV}) \end{array}$	Coulomb barrier (MeV)	Half-life of product	Decay mode	Principal γ-rays
⁹⁰ Zr (5.46)	(γ, \mathbf{n})	⁸⁹ Zr	12.00		78.4 hr	EC, β+	0.910, 1.710
, ,	$(\gamma, 2n)$	^{88}Zr	21.14	_	85 d	\mathbf{EC}	0.394
	$(\gamma, 3n)$	$^{87}\mathrm{Zr}$	33.81	_	$1.6\mathrm{hr}$	EC, β+	1.220
	(γ, pn)	^{88}Y	20.20	6.44	108.1 d	EC, β+	0.898, 1.836
	(γ, \mathbf{d})	88Y	17.63	6.15	108.1 d	EC, β+	0.898, 1.836
	$(\gamma, \alpha n)$	⁸⁵ Sr	18.22	11.43	$64.0\mathrm{d}$	\mathbf{EC}	0.514
$^{91}Zr(11.23)$	$(\gamma, 2n)$	$^{89}\mathrm{Zr}$	19.19		$78.4\mathrm{hr}$	EC, β+	0.910, 1.710
, ,	$(\gamma, 3n)$	$^{88}\mathrm{Zr}$	30.18		85 d	\mathbf{EC}	0.394
	(γ, \mathbf{p})	$^{90}\mathrm{mY}$	6.86	6.40	$3.1\mathrm{hr}$	IT, β-	0.202, 0.482
$^{92}Zr(17.11)$	(γ, \mathbf{p})	$^{91}\mathrm{mY}$	9.40	6.38	50 min	\mathbf{IT}	0.551
,	(γ, pn)	$^{90}\mathrm{mY}$	17.33	6.40	$3.1\mathrm{hr}$	IT, β-	0.202, 0.482
	(γ, \mathbf{d})	$^{90}\mathrm{mY}$	15.10	6.11	$3.1\mathrm{hr}$	IT, β-	0.202, 0.482
$^{94}Zr(17.40)$	(γ, \mathbf{p})	$^{93}\mathrm{Y}$	10.33	6.35	$10.3\mathrm{hr}$	β-	0.267, 0.940
⁹⁶ Zr (2.80)	(γ, \mathbf{n})	$^{95}\mathrm{Zr}$	7.84		65.5 d	β-	0.724, 0.756
⁹² Mo(15.86)	(γ, α)	$^{88}\mathrm{Zr}$	5.46	13.65	85 d	EC	0.394
, ,	$(\gamma, \alpha n)$	$^{87}\mathrm{Zr}$	17.65	13.69	$1.6\mathrm{hr}$	EC, β+	1.220
94 Mo(9.12)	$(\gamma, \alpha n)$	$^{89}\mathrm{Zr}$	14.06	13.62	$78.4\mathrm{hr}$	EC, β+	0.910, 1.710
¹⁰⁰ Mo (9.62)	$(\gamma, \alpha n)$	$^{95}\mathrm{Zr}$	11.02	13.40	65.5 d	β-	0.724, 0.756

Measurement of Radioactivity. The γ -ray measurements were made with a Ge(Li) detector, with a sensitive volume of 36 cm³, coupled to a TMC 1024-channel pulseheight analyzer. The counting system had a resolution of 4 keV for the 661.6 keV γ -line of ¹³⁷Cs. The sample was measured at a fixed position, 1 cm from the sensitive surface of the detector.

A $3^{\prime\prime}$ dia. $\times 3^{\prime\prime}$ NaI(Tl) crystal was also used as the detector. This was coupled to an 800-channel pulse-height analyzer made by the Tokyo Shibaura Electric Co., Ltd. The sample was located at a distance of 1 cm from the crystal surface.

For the study of various photonuclear reaction products, in which a much greater resolving power was required, the Ge(Li) detector was used exclusively. For analytical purposes, the NaI(Tl) detector was used.

Results and Discussion

Photonuclear Reaction. The nuclear data of present importance are given in Table 1. For a zirconium sample irradiated with 20 MeV bremsstrahlung, 89 Zr and 95 Zr produced by the (γ,n) reactions and 91mY produced by the (y,p) reaction were measured at a cooling time of 45 min. At 30 MeV,88Zr was produced by the $(\gamma,2n)$ reaction and ^{90m}Y and 93 Y were produced by the (γ,p) reactions, beside the above products. With this energy, 88 Y formed by the (γ,pn) and (γ,d) reactions on 90 Zr was also recognized after the relatively short-lived products had decayed away. In addition, the ${}^{90}\text{Zr}(\gamma, 3\text{n}){}^{87}\text{Zr}$ reaction occurred for an energy beyond 45 MeV. These zirconium and yttrium activities are summarized in terms of their γ -ray photopeak intensities, and are plotted against bremsstrahlung maximum energy, in Fig. 1. All the activity data are expressed in counts per minute per milligram of zirconium at the end of an 1-hr irradiation by bremsstrahlung with the given

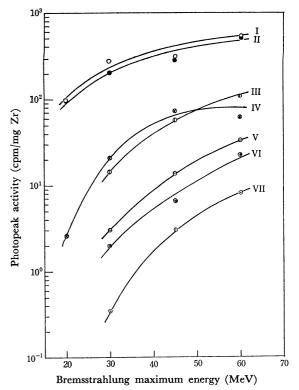


Fig. 1. Photopeak activities of zirconium and yttrium nuclides formed in zirconium as a function of bremsstrahlung maximum energy with a 36 cm³ Ge(Li) detector.

I: 89Zr 0.910 MeV γ-ray
II: 89Zr 0.511 MeV γ-ray
VI: 93Y 0.267 MeV γ-ray
III: 90mY 0.202 MeV γ-ray
VII: 88Zr 0.394 MeV γ-ray

IV: 91mY 0.551 MeV γ-ray

maximum energies, after being normalized to a standard dose rate required to produce 1.0 μ Ci ¹⁹⁶Au by the 1-hr irradiation of 1 mg of gold. It is clear that the

Table 2. R_W versus R_{A_0} for zirconium-molybdenum mixtures

R_{W}	R	A_0	R_W/R_{A_0}		
(Zr/Mo)	⁸⁹ Zr(0.511 MeV)	⁸⁹ Zr(0.910 MeV)	89Zr(0.511 MeV)	⁸⁹ Zr(0.910 MeV)	
2.460×10^{-3}	9.55×10^{1}	1.33×10 ²	2.58×10 ⁻⁵	1.85×10 ⁻⁵	
2.220×10^{-3}	8.33×10^{1}	1.15×10^{2}	2.64×10^{-5}	1.91×10^{-5}	
6.272×10^{-4}	2.27×10^{1}	3.27×10^{1}	2.76×10^{-5}	1.92×10^{-5}	
1.902×10^{-4}	7.04×10^{0}	1.02×10^{1}	2.70×10^{-5}	1.86×10^{-5}	
1.390×10^{-4}	5.39×10^{0} 6.74×10^{0}		2.58×10^{-5}	2.06×10^{-5}	
2.490×10^{-5}	8.99×10^{-1}	1.22×10^{0}	2.77×10^{-5}	2.04×10^{-5}	
		Mean:	2.67×10^{-5}	1.94×10 ⁻⁵	
		Std. dev.:	$\pm 0.08 \times 10^{-5}$	$\pm 0.08 \times 10^{-5}$	

0.910 MeV γ -ray of ⁸⁹Zr gives the highest photopeak activity for all the bremsstrahlung maximum energies. The annihilation radiation (0.511 MeV) can also be used for the sensitive determination of zirconium.

When molybdenum was irradiated with 20 MeV bremsstrahlung and the zirconium activity was separated, only the 0.394 MeV γ -ray was observed; it was attributed to 88 Zr produced by the 92 Mo(γ,α) 88 Zr reaction. With 30 MeV bremsstrahlung, γ -rays due to the 89 Zr produced by the 94 Mo(γ,α n) reaction have also been measured. In addition, 87 Zr and 95 Zr were produced by the (γ,α n) reactions on molybdenum at energies beyond 45 MeV. Since the 89 Zr activity was used in the determination of zirconium, the irradiation conditions leading to the production of 89 Zr from molybdenum had to be avoided. Below 20 MeV, only the 94 Mo(γ,α n) 89 Zr reaction (-Q=14.06 MeV) can produce 89 Zr. The experimental results showed that no appreciable amount of 89 Zr was produced from molybdenum with 20 MeV bremsstrahlung.

The Determination of Zirconium. The annihilation radiation or the 0.910 MeV γ-ray photopeak can be utilized for the determination of zirconium, while the 88Zr activity arising from molybdenum can be used as a reference. The accuracy of the method was assessed by processing synthetic zirconium-molybdenum mixtures. They were irradiated with 20 MeV bremsstrahlung for 3 hr at a dose rate of 8×10^4 R/ min.¹¹⁾ After the irradiation, the zirconium activities were separated chemically as has been described above. Figure 2 shows a typical γ -ray spectrum of the zirconium fraction. The photopeak area of the 0.511 MeV or 0.910 MeV peak of 89Zr was measured and compared with that of the 0.394 MeV peak of 88Zr. The results are given in Table 2. In each case, a good proportionality was obtained between R_W and R_{A_0} , where R_W is the weight ratio of zirconium to molybdenum and where R_{A_0} is the ratio of the photopeak activities corrected at the end of a 3-hr irradiation. The zirconium content can be determined down to $45 \,\mu g$ by this relationship, with a relative error of within 4% under the present experimental conditions.

Fig. 2. γ -Ray spectrum of radiozirconium separated from a mixed sample (Zr $45.2 \mu g + Mo~1.815 g$), 23.3 hr after irradiation with 20 MeV bremsstrahlung for 3 hr with a NaI(Tl) detector.

When a photopeak activity of 10 cpm is selected as the limit of determination, about $18 \mu \text{g}$ of zirconium in 2 g of molybdenum can be determined. With an accelerator giving a higher bremsstrahlung dose rate, the sensitivity is improved. In the energy region of 20 MeV bremsstrahlung, no interfering photonuclear reactions can occur from the coexisting elements. In the present case, the neutron reactions which arise from photoneutrons cause no serious problems.

This method can be used generally for the determination of zirconium when we add a proper amount of molybdenum, 2 g in most cases, to the sample as the reference element. When this method is combined with that reported previously for the determination of niobium,⁴⁾ zirconium and niobium may be determined simultaneously with molybdenum used as the reference.

In conclusion, the present authors believe that the method presented here is promising for the accurate

¹¹⁾ The dose-rate determination has been done by means of a method reported earlier.¹²⁾

¹²⁾ Y. Oka, T. Kato, and I. Nagai, J. Nucl. Sci. Tech., 4, 300 (1967).

determination of zirconium in samples of various origins, provided that those samples do not contain a large amount of molybdenum.

The authors express their appreciation to members of the linac staff at the Institute of Nuclear Science, Tohoku University, for their very fine services.